平成19年度環境対応型ディーゼルエンジンの

基盤技術開発補助事業報告書

2008年2月28日

社団法人日本陸用内燃機関協会

基盤技術開発研究会 構成表

(会社名 順不同)

- 氏名 所属
- 委員長 宮本 登 北海道大学 名誉教授
- 委員 山田修一 (株) クボタ エンジン技術部
- 委員 西村章広 ヤンマー(株)中央研究所 エンジン研究グループ
- 委員 筒井泰弘 三菱重工業(株) エンジン技術部
- 委員 倉科 守 (株) IHIシバウラ エンジン事業部 技術部
- 委員 石井 正 (株) DRD 実験部
- 委員 森本洋介 有識者
- 委員 四方光夫 有識者
- 委員 塚本悌介 有識者
- 事務局 若山禎一郎 (社)日本陸用内燃機関協会 専務理事
- 事務局 臼井一門 (社)日本陸用内燃機関協会 第一技術部
- 事務局 瀧野壽夫 (社)日本陸用内燃機関協会 第二技術部

平成19年度環境対応型ディーゼルエンジンの

基盤技術開発補助事業報告書

目 次

1.	基般	技徒	計開考	≜研究の目的	1
2	显翠	研究	日本		3
2.		1917	∟г յ∧⊑		0
3.	基盤	技術	衍開	≗研究会及び分科会実施日程	6
3.	1	基盤	建技徒	所開発研究会	6
3.	2	基盤	建技徒	所開発分科会	6
4.	基盤	技術	衍開 系	各分科会報告	7
4.	1	クオ	ドタケ	科会	7
4.	1.	1	研究	その目的	7
4.	1.	2	研究	その内容	7
4.	1.	2.	1	排ガスレベルの調整	7
4.	1.	2.	2	DPF の仕様と DPF 再生方式について	8
4.	1.	2.	3	DPF 強制再生システムの試作	8
4.	1.	2.	4	試験結果	9
	(1)	DP	F 強領	制再生システムの動作確認試験結果	9
	1) 引	な質ス	ブス投入時の HC、CO の排気スリップの確認	10
	2)後	段 I	DOC の効果	10
	(2)	DP	F 強	制再生試験(DPF に捕集された煤の強制燃焼試験)	11
	1) エ	ニンジ	^ジ ン回転速度 1680rpm での DPF 強制再生試験	12
	2	L (ニンジ	^ジ ン回転速度 2800rpm での DPF 強制再生試験	13
	3	L (ニンジ	ジン回転速度 2800rpm での DPF 強制再生試験(バッフル板を追加)	14
	4	L (ニンジ	ジン回転速度 1000rpm での DPF 強制再生試験、バッフル板付	15
	(5))ク	"ロー	・プラグによる改質ガスの着火	16
4.	1.	3	まと	: め ·····	17
4.	1.	3.	1	研究日程	17
4.	1.	3.	2	平成 19 年度の研究結果	17

4.	1.	3.	3	次年度(平成 20 年度)の課題	18
4.	2	ヤン	/7-	-分科会	20
4.	2.	1	研究	その目的	20
4.	2.	2	供詞	【機関および試験装置 ─────────────────────	21
	(1)	供詞	€機関		21
	(2)	試驗	設装置	<u>-</u>	21
	(3)	平成	λ 19	年度の試験装置の変更点および試験条件の設定方法	22
4.	2.	3	現北	や性能の確認試験結果	23
4.	2.	4	各モ	ードでの H ₂ ・CO 混合ガス量の最適化	24
4.	2.	5	噴射	付時期変更による低 NOx 化、低 PM 化の検討 ─────────	25
4.	2.	6	酸化	2触媒による PM の低減	26
4.	2.	7	平成	え 19 年度研究結果のまとめ	30
4.	3	三麦	重]	二業分科会	31
4.	3.	1	研究	ピ開発の実施事項	31
4.	3.	1.	1	C1 および NRTC モード評価結果	31
4.	3.	1.	2	エンジン仕様と NOx, PM の関係把握 ······	31
4.	3.	1.	3	酸化触媒およびメタル DPF による PM 低減試験	31
4.	3.	2	研究	2開発の方法	31
4.	3.	2.	1	供試エンジン	31
4.	3.	2.	2	供試後処理装置	31
4.	3.	2.	3	運転計測装置	33
4.	3.	2.	4	運転方法	35
4.	3.	3	研究	2開発の結果と解析	35
4.	3.	3.	1	C1 および NRTC モード評価結果	35
4.	3.	3.	2	エンジン仕様と NOx, PM の関係把握	36
4.	3.	3.	3	酸化触媒およびメタル DPF による PM 低減試験	39
4.	3.	4	まと	: Ø	43
4.	3.	4.	1	平成 19 年度の研究成果	43
4.	3.	4.	2	今後の課題	43
4.	3.	4.	3	来年度の重点実施事項	43

4.	4	IHI シバウラ分科会 ······	44
4.	4.	1 平成 19 年度の研究目的	44
4.	4.	2 試験エンジン諸元と概要	44
4.	4.	3 試験期間	45
4.	4.	4 新型 DPF 試験	45
	(1)	新型 DPF の仕様	45
	(2)	試験方法	46
	(3)	試験結果	47
	(4)	考察	49
4.	4.	5 軽油噴射強制再生試験	49
	(1)	軽油噴射装置仕様	49
	(2)	試験方法	50
	(3)	試験結果	50
	(4)	試験考察	55
4.	4.	6 データの分析と課題	56
4.	4.	7 課題への対応	56
4.	4.	8 今後の予定(次年度の予定)	56
5.	まと	とめと今後の課題	57
5.	1	まとめ	57
5.	2	今後の課題	60

1. 基盤技術開発研究の目的

世界的な環境問題への関心の高まりの中、グローバルな環境保全の立場からエンジン ン排出ガス規制は年々強化されつつある。オフロードエンジン業界では、環境問題に 対応するための技術開発力の強化とそれに伴う大幅なコストアップに如何に対処する かが最大の課題となっており各社共総力を挙げてこの問題に取り組んでいる。

かかる状況下で本基盤技術開発研究会(以下 研究会と称す)は2年目を終了し Tier4適合への開発指針の絞込みが進みつつある。

第六次答申¹⁾において「ディーゼル特殊自動車のうち定格出力が19kW以上560kW 未満のものについては、一般のディーゼル自動車の新長期規制に適用される後処理装 置の適用の可能性を見極め2010年度の達成を目途とした新たな低減目標について検討 する。その際には、新たな排出ガス試験法の導入についても検討する」とありその後 第六次答申に基づいて平成18年(2006年)からオフロード特殊自動車に対して法律等 の枠組みにおいて規制強化がおこなわれてきたところである。

一般のディーゼル自動車に採用され、または開発が進められている技術を特殊自動 車の特殊性を考慮した上で適用していくことにより、排出ガスの一層の低減を図るこ とが可能となるものと考えられる。

また本年1月に発表された第九次答申²⁾では、ディーゼル特殊自動車については ディーゼル乗用車・トラックの技術を特殊自動車に転用するための開発期間が必要で、 先ずディーゼルエンジンの固有性能を改善向上させるため

- 燃焼室の改善
- 燃料噴射装置の改良
- ③ 燃焼制御の最適化

が引き続き行われると共に、小さな出力エンジンに於いても排出ガス再循環(以下 EGR と呼ぶ)装置等が採用され 2011 年頃から PM 後処理装置が採用可能と考えられる。

排出ガス低減目標値は19kW以上37kW未満のものについては平成25年(2013年)末まで にNOxは33%減(4.0g/kW/h)・PM規制値は93%減(0.03g/kW/h)を、37kW以上56kW未満 のものについてPM規制値は92%減(0.025g/kW/h)を、達成することが適当であるとし、 一般のディーゼル自動車に比較して出力が小さい範囲であり特有の排気ガス技術開発 に時間が必要であることからそれらのエンジンを搭載する排出ガス規制の実施にあた っては規制への転換が円滑に行われるよう配慮する必要があると述べている。 また 米国EPAが発表したTier4排出ガス規制³⁾では、オフロード用ディーゼルエン ジンに対し大幅な規制強化を2011年以降出力別に遂次実施すべく検討されている。

これによると56kW未満の規制値は、国内のディーゼル特殊自動車と同レベルで PMはほぼ1/10(0.03g/kW/h)の規制値となりPM後処理装置が不可欠となっている。

このままの推移すると米国Tier4は2012年・国内は2013年末には日本メーカが最も得 意とする56kW未満の小型ディーゼルエンジンの規制値は、PM規制値がほぼ1/10となる。

一方 (社)日本陸用内燃機関協会会長の「年頭にあたって」⁴⁾によると国内の主 要需要先である農業機械分野では輸出用トラクタは横ばい傾向にあるもののその他の 農業機械需要は低調で前年度を下回っている。もう一つの主要需要先の建設機械では 国内需要は横ばい傾向にあるもののその他のディーゼルエンジンの生産が前年に比べ 大幅な伸びを見せている。この様な市場状況を背景に平成19年度のオフロードディー ゼルエンジンの生産見込みは国内生産約141万台 海外生産41万台 合計182万台と前 年度比107%と伸長し前年度以上を確保できると予想している。

小型ディーゼルエンジンは、日本メーカがほぼ世界市場を凌駕しており国内外で圧 倒的な優位にあるが、その大半はエンジン出力 56kW 未満の小型ディーゼルエンジンで 90%を占め 50%以上が輸出されている。⁵⁾

今や小型ディーゼルエンジンはその信頼性・低燃費・取り扱い容易等々の優位性が 認められ日本の国際商品として安価なガソリンエンジンと共に今や国内外で人類社会 に貢献しつつ定着している。

目覚しい技術革新が進みつつあるが、小型ディーゼルエンジンでは排出ガス規制適 合には最新自動車技術をそのまま56kW未満の小型ディーゼルエンジンに適用するには 使用環境が劣悪でそのまま展開できず、小型ディーゼルエンジン特有の基盤技術開発 が求められている。 かつコストミニマムで対応できなければ競合機種であるガソリン エンジンとコスト上対抗できず現有市場から小型ディーゼルエンジンは駆逐される 状況にある。

また この出力帯は日本メーカの独断場であるがゆえに基盤技術は外国製でなく日本の小型ディーゼルエンジンメーカによる独自の開発が必要である。

それには日本の製造業の強みである「もの創り」により日本製 Tier4 規制適合基盤 技術開発の宿命が課せられ かつ商品化研究期間を考慮すれば緊急課題である。

しかるに現在この様な基盤技術は、全く未知の分野であるため成功の見込みが立た

ず単独企業で開発するには極めてリスクが大きい。

そこでこの基盤技術研究会の成果が、EPATier4は2012年,国内のディーゼル特殊自動車排出ガス規制は2013年末から実施予定のTier4適合技術開発への開発指針の絞込みが可能となり、今後の開発投資削減と開発期間短縮に大いに寄与し、もって業界の経営基盤強化と機械工業の振興に寄与できることを目的とする。

2. 開発研究内容について

研究の狙いは、大幅な基本構造を変更せず無過給エンジンでも後処理装置で適合可 能なのか?それとも全く可能性がないのか?過給付が不可欠なのか? 等々 の目安 が判定可能で今後のTier4適合への研究課題の狙いが絞り込めることになり、このこと により将来の商品化研究の研究期間短縮と効果的な研究投資が可能となる。

1年目は現状エンジンの性能確認し課題抽出を行い2年目は、課題の絞込みにより 最終方向づけを行い、3年目は絞り込んだ課題の最終方向づけをすることとし開発研 究を展開することにした。⁶⁾

先ず、1年目は現状エンジンの性能確認し課題抽出を行った。試験エンジンは、陸 内協の会員会社から研究会へ参加希望された各社から提供して頂き、そのベースエン ジンの排出ガス実態評価調査を行った。

その後は、現状エンジンの基本構造を大幅に変えないとの制約の元で前処理・エン ジン燃焼改善・後処理装置を視野に入れつつ、各社特有のアプローチを行った。

2年目の今年度も第1年度と同様な研究会活動を展開し、陸内協に基盤技術開発研 究会を設け大学教授に委員長をお願いし、研究会への参加会社4社・有識者から構成し その事務局は陸内協が担当した。

委員会は陸内協で4回開催し昨年度より1回増やしてコミュニケーションを良くした。この研究会で試験エンジンの試験方案・排出ガスデータ分析と評価、そして対応 策の検討を行った。

1回目は試験エンジンの改造内容・試作部品の購入手続き等、2回目以降は分科会 から報告を受けた試験エンジンの運転データ分析およびエンジン改良方法(後処理装 置等々)の評価と対策策、最終の4回目は事業活動の成果の確認と報告書の作成要領 等を検討した。

また この研究会をサポートするため下部組織として各社主催の分科会を配し試験

方法・試験結果の分析・対応方法 等々 各4回開催した。

1年目と同様に最新試験設備ラボで各社の試験エンジン運転を実施することにし、 各社試験エンジン運転実施の際にはそれぞれの委員・有識者・事務局が可能な限り立 会うことにした。

これらの分科会活動で得られた実験データ結果や、その分析結果をその都度基礎 技術開発研究会に報告された。

主な成果は、エンジン固有性能向上・インタークーラー付き過給機仕様及び電子制 御 EGR、酸化触媒(以下 DOC と称す)・ディーゼルパティキュレートフィルタ(以下 DPF と称す)や再生制御を必要としないメタル DPF の適用性も追求を行った。

これらの結果 PM 低減には DPF 使用が効果的であることを確認した。

最新設備ラボでのデータは、それぞれの研究会・分科会にて分析検討され最終目標 であるTier4規制適合・ディーゼル特殊自動車排出ガス規制適合技術開発への開発指針 を模索した。

この第2年目事業は、平成19年4月1日から開始し平成20年3月31日をもって研究活動 を終了した。

最終の3年目は、この2年間の試験結果をベースにDPFの連続再生のための課題への対応と更なる研究、そして規制適合への最終方向づけを提言できるように絞り込んだ 課題にアプローチする。すなわち、

- ① 小形ディーゼルエンジンにおける燃焼系での NOx と PM の低減に向けた更なる技術開発
- ② 排気系での DOC あるいは DPF の性能向上に係る技術開発と製品化に向けた研究
- ③ DPF の連続再生技術 等々である。

この研究会は平成21年3月末で終了するが、これら一連の環境対応型ディーゼルエンジンの基礎技術開発を推進することによりその研究結果を分析検討し最終目標である世界で最も厳しいとされている2012年からの米国Tier4規制と国内ーゼル特殊自動車排出ガス規制適合の可能性への燃焼改善と後処理装置やその他のディバイスが国内外の排出ガス規制値適合にどの程度まで近づいているかを見極め将来の商品化開発指針の提言を行いたい。

本研究会終了後は、商品化まで残された時間はあと2年で、その間に各社の商品化 研究の開発メニューをこなす必要があり、特に社内開発規定によるユーザ試験・耐久 試験等に時間が掛かるが、必ず成功させねばならない。

日本の小型ディーゼルエンジンが、益々発展するためにもこの研究会の成果が期待されている。

またこれらの研究成果は、事業内容報告書として作成後、陸内協ホームページ、陸 内協機関誌「LEMA」等に適時掲載し、H20年11月4日には陸内協創立60周年記念技 術フォーラムにおいて、この基盤技術開発研究会の成果をまとめて発表する予定であ る。

参考文献:

¹⁾ 中央環境審議会「今後の自動車排出ガス低減のあり方について 第六次答申」H15.6.30

²⁾ 中央環境審議会「今後の自動車排出ガス低減のあり方について 第九次答申」H20.1.29

³⁾ EPA $\pi - \Delta \sim - \vec{v}$ http//www.epa.gov/nonroad-diesel/regulation.htm

⁴⁾陸内協会長 「年頭にあたって」 LEMA 2008 No.490

⁵⁾陸内協ホームページ http//www.lema.or.jp/

⁶⁾ 平成 19 年度基盤技術開発補助金等交付申請書 (社)日本陸用内燃機関協会

3. 基盤技術開発研究会及び分科会実施日程

3.1 基盤技術開発研究会

基盤技術開発研究の推進母体であり、全体計画作成と推進、及びエンジン改良方法の決定等 を実施した。

実施項目	実施日	実施内容			
第1回基盤技術開発研究会	H19年5月30日	全体計画承認、エンジン改良方法の承認			
第2回基盤技術開発研究会	H19年 8月 20日	各分科会の中間報告及び対応策の検討			
第3回基盤技術開発研究会	H19年12月4日	各分科会の中間報告、スケジュール確認			
第4回基盤技術開発研究会	H20年2月28日	H19年度事業報告、成果の把握			

3. 2 基盤技術開発分科会

4 つの分科会(クボタ分科会、ヤンマー分科会、三菱重工業分科会、IHI シバウラ分科会に 分かれて全体計画に基づき、個別テーマの推進を実施した。

実施項目	実施日	実施内容
クボタ分科会	H19年7月4日	試験エンジン : V2203-M-E2B
	H19年12月6日	エンジン改良:DPF 装置+前・後段 DOC
	H20年1月30日	DPF 強制再生システムの試作
	H20年2月12日	改良後データ採取:強制再生テスト、C1モード
ヤンマー分科会	H19年7月17日	試験エンジン:4TNV98-YTBL
	H19年10月22日	エンジン改良:EGR、燃料改質、噴射時期の最
	H20年1月15日	適化及び DOC 装着
	H20年2月12日	改良後データ採取:C1モード、
三菱重工業分科会	H19年6月27日	試験エンジン:S4S-DT(噴射系改造)
	H19年 8月 29日	エンジン改良:外部 EGR、インタークーラー付、
	H19年10月1日	DOC+DPF
	H20年1月15日	改良後データ採取:C1モード、NRTCモード
IHI シバウラ分科会	H19年7月3日	試験エンジン:N844L-C型(噴射系改造)
	H19年11月14日	エンジン改良:DOC+DPF 装置
	H20年1月16日	DPF 強制再生試験
	H20年2月13日	改良後データ採取:強制再生テスト

- 4. 基盤技術開発分科会報告
- 4.1 クボタ分科会
- 4.1.1 研究の目的

前年度は19kW以上37kW未満の小型産業用ディーゼルエンジンの排ガスレベルの把握 および、米国 EPA の Tier 4 規制へ適合のための DPF 強制再生システムの予備評価(DPF に捕集された煤を模擬ガス使用によって強制燃焼させる試験)を行い、本システムの煤燃 焼能力を確認した。今年度は DPF 強制再生補助装置を試作し、その動作確認、煤燃焼能 力の確認を行う。

4.1.2 研究の内容

4.1.2.1 排ガスレベルの調整

今年度はエンジンの排ガス・PM 値を米国 EPA の Tier4 規制値に合わせるべく燃料噴射 時期の調整を行い、DPFを装着してTier4 適合レベルにすることができた(図4.1-1)。 供試エンジン諸元を表4.1-1、試験結果を表4.1-2に示す。

表4.1-1 供試エンジン諸元

燃焼方式	4 サイクル過流室式ディーゼルエンジン
気筒数×ボア(mm)×ストローク(mm)	4×8 7×9 2. 4
排気量 (L)	2.197
出力(kW)/定格回転数(rpm)	36.4/2800
過給機	無し
燃料	JIS2 号軽油(硫黄分 4ppm)

表4.	1 - 2	排ガス測定結果	(C1)	8モード)

	トンクル	СО	NOx+HC	РМ	SOF 割合
	r ~ 7/2	g∕kW•h	g∕kW•h	g∕kW•h	%
ベース	マイクロ	0.74	4.80	0.227	12.8
平成 18 年度	マイクロ	0.16	4.78	0.034	45.4
平成 19 年度	マイクロ	0.31	4.48	0.025	

図4.1-1 排ガス測定結果

4. 1. 2. 2 DPF の仕様と DPF 再生方式について

DPF は再生しながら連続使用することを前提に、捕集した煤を燃焼させるため DPF の 基材としてより耐熱性が高い SiC を選んだ。又、DPF に触媒を担持せず、車載燃料を用い た排気昇温方法を用いて煤を燃焼させることを目標とした。また、DPF の前段(入口側) と後段(出口側)に酸化触媒を配置する構造とした。

表4.1-3 DPF、DOC 仕様

	担体	触媒担持
DPF	SiC ハニカム	なし
DOC(前段、後段))	メタルハニカム	Pt 触媒

4.1.2.3 DPF 強制再生システムの試作

今年度の研究として、DPF 再生補助装置の試作を行い、エンジン上での DPF 強制再生 テストを実施する。装置(システム)概要を図4.1-2および図4.1-3に示す。

図4.1-2 DPF 強制再生システム

エンジン

排気ダクト

図4.1-3 DPF 強制再生システム試験装置概観

- 4.1.2.4 試験結果
- (1) DPF 強制再生システムの動作確認試験結果

	エンジン	前段 DOC	後段 DOC	試験内容	図番号
	回転	入口温度	有無		
(1)	1680rpm	$250^{\circ}\mathrm{C}$	なし	HC、CO の排気スリップ	図 4.1-4
				の確認	
(2)	1680rpm	$250^\circ\!\mathrm{C}$	あり	排気スリップに対する	図 4.1-5
				後段 DOC の効果確認	

表4.1-4 動作確認テスト試験一覧表

① 改質ガス投入時の HC、CO の排気スリップの確認

試験を始めるに当たり、200~300℃の排気温度で排気管内に燃料改質ガスを投入した場合の HC、CO のスリップが生じることが予想されたため測定を行った。 その結果、図 4.1-4に示すように、前段 DOC の十分活性の得られない温度で大量の HC、CO が排気に流れるのが確認された。よって以降は、本研究では後段 DOC を取付けることとした。

図4.1-4 改質ガス投入時のHC、COの排気スリップ

2 後段 DOC の効果

後段 DOC の追加で CO、HC はディーゼルエンジンの通常の排出レベルまで低減するこ とができた。また、DOC 入口 250℃以上の条件では DOC の触媒作用が働いて DPF 入口 温度が煤の燃焼温度である 600℃に到達した。 後段 DOC の追加により HC,CO の排出量 増加を抑制しながら改質ガスによる DPF 入口温度の昇温が可能であることが確認できた。 また、NOx については改質ガスの投入前後で排出量に差は見られない。

図4.1-5 後段 DOC を追加した効果

(2) DPF 強制再生試験(DPF に捕集された煤の強制燃焼試験)

DOC 入口 250℃での安定的な改質ガスの酸化発熱反応が確認できたので、DPF に煤を約 10g/L 捕集し、DPF 入り口温度が 600℃に到達後、10 分間再生する方法で DPF の強制再 生試験を行った。

	エンジン	エンジン 前段 DOC 後段		試験内容	図番号	写真番号
	回転速度	入口温度	有無			
	(rpm)	(°C)				
(1)	1680	250	あり	煤の強制燃焼試験	図 4.1-6	図 4.1-7
(2)	2800	250	あり	煤の強制燃焼試験	团 4.1-8	团 4.1-9
(3)	2800	2800 250		DOC 入口にバッフル板を追	図 4.1-10	図 4.1-11
				加し温度差を改善		团 4.1-12
(4)	1000	220	あり	煤の強制燃焼試験	团 4.1-13	図 4.1-14
(5)	1000	180°C	あり	グロー着火の確認	図 4.1-15	

表4.1-5 煤の強制再生試験一覧表

エンジン回転速度 1680rpm での DPF 強制再生試験

DPF入口中央の温度が 600℃を超えた時点から 10 分後に改質ガスを止めた。排気圧力を 見ると DPF入口端部(周縁部)温度が 600℃を超えたあたりから圧力の低下がみられ、こ の付近(200 秒付近)から煤の燃焼が始まっている。この状態で再生率 70.9%を得た。

図4.1-6 1680rpm、DPF 強制再生

捕集前

捕集後

再生後

図4.1-7 1680rpm、強制再生 DPF 写真

② エンジン回転速度 2800rpm での DPF 強制再生試験

2800rpm では DPF 入口中央と DPF 入口端部の温度に 100℃以上の差があり DPF 出口 が 700℃になっても DPF 入口中央の温度が 600℃に到達しないため、DPF 入口端部の温 度が 600℃に達した後 10 分を超えた時点で改質ガスを止めた。この状態で再生率 59.4%。 開放後、DPF の中央付近に煤の燃え残りが確認できた。

図4.1-8 2800rpm、DPF 強制再生

中央付近に煤の燃え残りが見られる

図4.1-9 2800rpm、強制再生 DPF 写真

③ エンジン回転速度 2800rpm での DPF 強制再生試験 (バッフル板を追加)
 再度、2800rpm で DOC 入口にバッフル板を追加したところ、DPF 入口中央部と DPF
 入口端部との温度差は 10℃程度にまで改善し、再生率 98.9%を得た。

図4.1-10 バッフル板付、2800rpm 、DPF 強制再生

捕集前

捕集後

再生後

図4. 1-11 2800rpm、バッフル板付、強制再生 DPF 写真

図4.1-12 バッフル板取り付け

④ エンジン回転速度 1000rpm での DPF 強制再生試験、バッフル板付

1000rpm では排気配管の放熱により DOC 入口温度が下がってしまたため、220℃で DPF 再生を行った。この温度ではやはり前段 DOC の反応が遅く、反応が開始して DPF 入口の温度が上昇するまでにするまで 10 分程度時間がかかってしまい、この間 1000ppm 近い HC が発生した。このため、排気温度が低い場合は適切な点火源を併用して迅速に DOC を加熱する工夫が必要である。ここでは再生率 65.7%を得た。

図4. 1-13 バッフル板付き、1000rpm 、DPF 強制再生

捕集前捕集後再生後図4.1-141000rpm、バッフル板付、強制再生 DPF 写真

⑤ グロープラグによる改質ガスの着火

前項の排気温度が低い(100℃~220℃)運転条件では排気中の酸素濃度が高いことと、 燃焼性の高い CO、H2を含む改質ガスの利点を生かし、直接排気管内で火炎燃焼すること を狙って当初は 1680rpm でグロー着火を試みたが、着火することができなかった。そこ でエンジン回転速度、負荷などを変化させ、着火できる条件を探したところ、エンジン回 転速度を 1000rpm まで下げた際、着火することが分かった。更に、詳細にグロー着火可 能な条件を探した結果、グロー周辺温度が 280℃以上になった時に改質ガスにグロー点火 できる事が分かった。本試験では改質ガスに対するグロー着火の可能性は確認できたが、 現状では性能的に不十分のため、今後、点火源の強化、保炎構造の改善が必要である。

図4.1-15 グロープラグによる改質ガスの着火

4.1.3 まとめ

4.1.3.1 研究日程

平成19年度の研究日程を表4.1-6に示す。

		H19								H20		
実施項目	6	7	8	9	10	11	12	1	2	3		
基盤技術開発分科		7/4					12/6	第3回分 1/20	科会			
会·報告会	第1回分	// F /科会				第2	12/0 回分科会		2/12 第4回分	科会		
排ガス後処理装置												
(DPF)試作・試運転				D	PF試作	<u>∽</u>	東付け 連	転				
再生補助装置			設計	卜、 試作	、単体	調整運車	Ā					
試作·試運転		-										
エンジン試験の準備												
(設計、製作)												
DPF 強制再生テスト								1/8~22	2			
(於、DRD)								→				
結果検討、まとめ								-				

表4.1-6 平成19年度研究日程表

4.1.3.2 平成19年度の研究結果

(1)前後 DOC 付き DPF、燃料改質器、燃料ポンプ、空気ブロワーの 4 点で構成する DPF 強制再生システムを試作し、エンジン上での機能の確認、問題点の摘出を行った。 電 源は DC12V、燃料は JIS2 号軽油を使用した。

(2) 試験開始にあたり、試験装置が過大な CO、HC を発生しないように DPF 出口の排 ガスの確認を行った結果、改質ガスの投入と同時に DPF 出口で大量の CO、HC が排出さ れていることがわかった。これに対し、後段 DOC を取り付けることにより改質ガス投入 および煤再生中の CO、HC の排出量を通常のディーゼルエンジンの排出レベルに抑える ことができた。 前段 DOC は低温酸化性能を高く、後段 DOC は高温耐久性を重視してマ ッチングすることが必要なことがわかった。 (3) 煤を約 10g/L 捕集し、DPF 入り口温度が 600℃に到達後、10 分間再生する方法で DPF の強制再生試験を行った結果、1000rpm→再生率 65%、1680rpm→72%、2800rpm →98% の結果を得、昨年度設定した今年度の目標(70%以上)をほぼクリアーできた。 また、今年度に試作した装置の試験では 1 回の再生に要した軽油の量は、改質器の暖機も 含めて 0.4 (1000rpm) ~1.2L (2800rpm) であった。これは今後、空気ブロワーの性能 向上などにより改質器の暖機時間を短縮することで更に改善が可能と思われる。

(4)煤燃焼のための改質ガス投入時に、エンジン上での前段 DOC の反応開始温度は 230℃と、当初の単体試験の結果から期待した温度より高めの結果となっている。原因の 一つとして燃料改質器の H₂、CO 生成量の不足が考えられる。その理由としては、空気/ 燃料比と H₂、CO 生成割合の検討を行った常温での改質器単体運転に対し、排気の熱によ り改質器本体が過熱されるエンジン試験では、触媒槽の反応温度が単体試験時より高くな ったため当初の設定どおりの空気量を耐熱性の点から投入できなかったことがあげられ る。改質器本体の冷却などの対策も今後の課題である。

(5) 排気低温時の改質ガスのグロー着火は単体試験では確実な着火を得たが、エンジン 上では充分機能しなかった。更に点火源の強化、保炎機能の改善が必要である。

4.1.3.3 次年度(H20年度)の課題

次年度は今年度の調査結果を基に改良型再生補助装置を設計製作し、更にその自動化の 装置と制御ロジックを加え、DPF 再生性能・動作性能・実機搭載性を評価する。

(1) 今年度の研究から検出された下記①から③の問題点を改良するとともに、再生補助 装置(強制再生システム)を実装したプロトエンジンを試作する。

① 空気ブロワーとモーターのマッチング、性能向上による暖機時間短縮と燃費改善。

② 改質触媒槽の断熱と冷却による H₂、CO の収率向上と DOC 有効温度の低温化。

③ 排気低温時の改質ガス着火運転のための点火源強化、保炎構造の改良。

(2) 強制再生システムの制御ロジック、制御回路の試作、評価

今年度については、手動で再生補助装置を操作して試験を遂行したが、次年度は自動化装置と制御ロジックを付加し、DPF 再生性能・動作性能・実機搭載性を評価する。

予備データ取得

排気温度計の応答性、エンジンの回転速度・負荷に対する DPF の再生可能限界の 確認→高負荷運転時の酸素濃度が低い条件下で煤が燃焼可能な限界を確認する。

- ② 本年度の試験結果と上記①の結果から制御ロジックの構築と制御回路を試作する。
- ③ 制御装置を組み込んだ強制再生システムのエンジン実機運転での動作・性能評価。

(3)本研究は DPF 再生に対する燃料改質器の適用可否を判断する段階でありコスト的、 スペース的に現実的な再生補助装置の実装(実用化)は、今後の大きな課題である。更に、 燃料消費量の低減、信頼性、耐久性確保もこれからの検証と解決するべき課題である。

4.2 ヤンマー分科会

燃料の部分改質による環境対応型ディーゼルエンジンの基盤技術開発

4.2.1 研究の目的

ディーゼル機関は、ガソリン機関と比較した場合、圧縮比が高く吸気損失が少ないため 燃料消費率が低い.しかし、ディーゼル機関は、燃料噴射と自着火による層状燃焼である 故に、局所的に高温となり、NOx の排出が多くなるとともに、噴霧内部に過濃燃焼領域が あるため、PM (パーティキュレートマター:浮遊粒子状物質)が発生することが課題であ る⁽¹⁾.しかし、1990年代後半より、ディーゼル車に対する排出ガス規制が強化され、特に PM については、2003年10月より東京都を始めとしる8都県市において、国の法規制より さらに厳しい排出規制が開始され⁽²⁾、ディーゼル機関を搭載した車両は、PM を捕捉処理す る装置 DPF (ディーゼルパーティキュレートフィルタ)⁽³⁾を取り付けるなどの対策が必要 となっている.さらに、現在環境省中央環境審議会の次期排出ガス目標や米国 EPA 欧州 EC の提案している規制値案では、ガソリン機関とディーゼル機関がほとんど同等の規制値と なっている。本研究で対象とする汎用ディーゼルエンジンにおいても同様に、排ガス規制 が強化されてきており、PM 低減のために DPF などの後処理装置の適用が検討されている。 しかし、汎用エンジンは多くのアプリケーションに利用されており、多種多様な排気系を 有している。そのため、車両用に比べて形状の異なる多種の後処理装置を開発せねばなら ず、非常にコスト高となる。

そこで本研究では、19kW以上 56kW 未満の小形汎用エンジンにおいて, DPF などの高価な 後処理装置を用いずに、エンジン燃焼改善・EGR・酸化触媒などで次期排ガス規制(Tier4 2012-)をクリアする技術の検討を行ってきた。平成18年度には、現状エンジンの排ガス レベルを調査し、そこに NOx 低減のための EGR(排気ガス再循環)⁽⁴⁾を適用した。さらに PM の低減を行うために、この EGR ガス中に燃料の一部を噴射し、これをガス化⁽⁵⁾して吸気 させる燃料改質吸気の検討行った。結果として、EGR により NOx は十分に規制を満足する レベルに低減可能であったが、PM は規制値の 10 倍程度高い値となっており、更なる低減 が必要であることが明らかとなった。そこで平成 19 年度は、最も簡便な後処理装置である DOC (ディーゼル酸化触媒)を適用し、排気中未燃成分をカットすることで、PM の大幅な 低減を狙うとともに、燃料改質吸気の量および燃料噴射時期を最適化し、規制値をクリア できる可能性について検討を行った。 4.2.2 供試機関および試験装置

(1) 供試機関

本研究に供試したエンジンは、平成18年度の研究と同様で、縦形直列水冷4サイクルデ ィーゼル機関で、小形建設機械・トラクタ・発電機セットなど多くの産業用機械に用いら れている汎用ディーゼルエンジンである。出力などの諸元を表4.2-1に示す。本エン ジンは、過給機を持たない自然吸気方式で、機械式噴射ポンプを有している。

エンジン型式	縦形直列水冷4サイクル機関
総排気量	3.32 L
気筒数×内径×行程	4×98 mm $\times 110$ mm
出力	51.1kW/2500rpm
燃料噴射方式	直接噴射式 機械式噴射ポンプ
過給方式	無過給

表4.2-1 供試機関の諸元

(2) 試験装置

本研究におけるエンジン性能試験は、平成18年度と同様に、株式会社DRDにて実施した。 エンジンの試験状況を図4.2-1に示す。計測器は、DRD所有の計測装置を使用した。

図4.2-1 エンジン試験の概観

(3) 平成 19 年度の試験装置の変更点および試験条件の設定方法

平成 19 年度の研究においては、簡易な後処理装置として 3 種類の酸化触媒を供試した。 それぞれの触媒貴金属の量や種類は、秘密事項となっているため、供試メーカーから情報 を得ることはできないが、1つはメタル製で酸化力小、残り2つはセラミクス製で酸化力 小と大の3種類である。酸化触媒の取り付けに際して、昨年取り付けていた排気マフラー を撤去し、その位置に酸化触媒を設置した(図4.2-2)。その結果、排気出口がエンジ ンクランク軸方向に 200mm 程度遠くなったが、DRD 殿の排気配管の変更で対応した。

図4.2-2 触媒取り付け状況

また、平成19年度は、さらなるNOxとPMの低減のため、噴射時期を変更して試験を行った。噴射時期は、噴射ポンプ本体を回転させて変更した。

燃料改質吸気の試験では、燃料改質装置の入手が困難であることから、平成18年度に、 EGR ガスに燃料の一部を噴射して改質ガスを生成した際のこの発生量をシミュレーション で検討した結果を用いて、改質ガス相当の水素とCOの混合ガスを模擬ガスとして用意し、 これを吸気から吸わせることで、同様の効果を持たせた。混合ガスの量は、平成18年度と 同様にEGR バルブ近傍に設置された流量制御バルブを使って制御し、流量は水素・CO供給 ライン上流に設けられたガス流量計を用いてモニターを行った。

EGR率は、吸気マニホールドから空気をサンプルし、そこに含まれる CO₂ 濃度と排気 CO₂ 濃度から算出した。

4.2.3 現状性能の確認試験結果

平成19年度の試験を実施するに当たって、昨年の試験以来10ヶ月以上保管されていた ため、現状のエンジン性能を再確認した。現状性能の確認では、供試エンジンの最大トル ク特性を調査した。図4.2-3に最大トルク特性の比較を示す。本研究で用いたエンジ ンは、昨年度十分にならし運転が終わっており、大きなトルク特性の変化がないことから、 正常な状態であると判断し、試験を継続した。

> Engine Performance Graph [FULL10] Unit(S1) AtmAdjust(ON) SmkAdjust(Minus-OFF) Interpolation(LINEAR) GasAdjust(TRIAS)

図4.2-3 現状性能の確認結果(最大トルク特性)

4.2.4 各モードでの H₂・CO 混合ガス量の最適化

図4.2-4は、平成18年度に実施したEGRによる低NOx化試験の結果である。図から分かるように、PM排出の多くは、高負荷モードである第1・2および第5・6モードで排出されている。特に1・5モードでは、PMの悪化のため高いEGR率が得られないことからNOxも高い。さらに、EGR率が低いため、混合ガス供給可能量も多くすることができず、PM低減効果が得にくいと考えられる。そこで、将来規制におけるエンジン出力設定のあるべき姿を見るためにも、これら2つの高負荷モードの負荷を10%下げ、それぞれ90%負荷とした場合の試験を行った。

図4.2-4 平成18年度のEGRによる低NOx化試験結果

図4.2.5に、第1モードおよび第5モードにおいて、負荷を10%下げた場合のNOx およびPMの排出量を示す。負荷を下げることでNOxはほぼ負荷に比例して10%程度下がる。 一方PMは、20%程度下がっており、負荷の低下割合よりも大きな低減となる。つまり、EGR による酸欠状態が発生してPMが悪化するまでの余裕度が大きく取れることから、より多く のEGR量と混合ガスの供給量を設定できることが分かった。この結果を基に、これ以降の 試験においては、NOx・PMの排出割合の高い第1・5モードについて10%負荷を下げた状態 で、表4.2.2に示すEGR率および混合ガス率に設定することとした。

図4. 2-5 第1・5モード負荷設定変更時の NOx および PM 排出量

モード	回転数	負荷	EGR 率	混合ガス率		
	rpm	rpm %		%		
1	2450	90	5	10		
2	2450	75	10	10		
3	3 2450 50 4 2450 25 5 1470 90		10	10 10 10		
4			20			
5			5			
6	6 1470 75		10	10		
7	7 1470 50		20	10		
8	8 800 0		20	10		

表4.2-2 各モードでの最適 EGR 率および混合ガス割合

4.2.5 噴射時期変更による低 NOx 化、低 PM 化の検討

平成18年度に実施した第2モードでの混合ガス供給試験結果より、H₂・C0混合ガスを 供給することで、若干PMを低減することが可能であるが、H₂の燃焼速度が速いことに起因 して、全体の燃焼が速くなり、NOxが増大することが分かった。そこで平成19年度は、残 りの各モードについて混合ガス供給時の性能を調査するとともに、噴射時期を遅らせて NO x を低減した際の性能試験を実施し、最適なエンジン運転諸元の調査を行った。

図4.2-6に、に示す。図中のデータは、表4.2-2の各モードの設定において、 燃料噴射時期を2°・4°の2段階遅らせた際のデータを基に、あるNOx+THCの値において 最もPMが低くなる各モードでの噴射時期を組み合わせた数値を示している。言わば最適噴 射時期でのNOx+THCとPMのトレンドを表すものである。昨年の結果と比べて、混合ガスを 加えることで、同一NOx+THC時のPMは20%程度低減されている。最大負荷を下げた効果が 10%程度あることから、残りの10%程度が純粋な混合ガス投入でのPM低減効果であると考 えられる。しかしながら、研究目標であるNOx+THC<4.7g/kWh、PM<0.03g/kWhに対しては、 PMが5倍程度と高く、更なるPM低減が必要である。

図4.2-6 混合ガス供給時の NOx および PM 排出トレンド

4.2.6 酸化触媒による PM の低減

PMは、固体のすすや硫酸化合物からなる ISF と未燃の燃料や潤滑油からなる SOF で形成 されている。小形エンジンでは、PM に占める SOF の割合が多い。よって PM を十分に低い レベルにするためには、SOF 低減が必須であり、これは一般に酸化触媒で実現可能である。 本研究では、ディーゼル酸化触媒を3種類試作した(図4.2-7)。1つは、メタル担体 に貴金属を担持したもので、低コスト化を意識してなるべく貴金属を少なくしたもの、残 り1つはセラミクス担体にそれぞれ貴金属の多いものと少ないものの1種類である。試験 は、第1・第5モードの負荷を90%に下げた最も規制値クリアに近い条件を用いて、それ ぞれの触媒の浄化性能および排ガス規制達成状況を調査した。

NO.5 メタル担体 白金量少

NO.6 セラミクス担体 白金量少

NO.7 セラミクス担体 白金量多 図4.2-7 供試した酸化触媒

酸化触媒は一般的にある温度から活性化し、浄化性能が高くなる(ライトオフ温度)。 排ガス規制は、8 モードの加重平均で求められることから、負荷の低い第4 モードや第7 モードでより大きな PM 低減(SOF 低減)を狙うには、なるべくライトオフ温度が低い方が 適している。ライトオフ温度は、使用する触媒体である白金量や担体そのものの温度特性 の影響を受けることが知られている。

図4.2-8に各触媒の排気温度と CO および THC の浄化特性の比較を示す。この試験 は、一定のエンジン回転数(1200rpm)において一定時間毎に負荷を上昇させ、各触媒使用時 の THC・CO それぞれのライトオフ温度を調査したものである。SOF は THC に起因すること から、SOF 低減が可能な温度は、THC のライトオフ温度と一致すると考えられる。

図4.2-8 各触媒の排気温度とCOおよびTHCの浄化特性

図より、各触媒のライトオフ温度を算出した結果を表4.2-3に示す。いずれの触媒 においても、COの酸化反応はTHCの酸化反応よりも低い温度で開始されており、SOF低減 は CO低減よりも困難であることが分かる。メタル担体とセラミクス担体では、同じ貴金属 量である場合(NO.5とNO.6)、セラミクス担体の浄化特性が若干高いことが分かる。これ は、メタル担体の方が、担体表面形状が滑らかで、表面積が少ないため、貴金属の利用効 率が低くなっていることが考えられる。一方、触媒量の多いNO.7では、COで40℃・THC で50℃程度、ライトオフ温度が低い。実際の商品に適用する際は、コスト上はなるべく白 金量を少なくするほうが有利であるが、十分な浄化性能を得るため、特にSOFを低減する ためには、かなりの白金量を必要とすることが明らかとなった。

触媒	C0 ライトオフ温度	THC ライトオフ温度		
NO.5(メタル 白金少)	235°C	260°C		
NO.6(セラミクス 白金少)	220°C	260°C		
NO.7(セラミクス 白金多)	160°C	205°C		

表4.2-3 各触媒のライトオフ温度

触媒性能で最良の結果を得た NO.7 触媒を用いて各モードの性能試験(EGR および混合ガス供給あり)を実施した結果を図4.2-9に示す。

図4.2-9 触媒使用時の NOx および PM 排出トレンド

触媒による SOF 分の削減および THC の削減により、混合ガス供給時よりもさらに低 PM 化が図れており、NOx+THC=4.7g/kWh 時での PM は 0.1g/kWh となった。しかし、目標である 0.03g/kWh に対しては 3 倍程度の値である。SOF は、低負荷モードである第4・第7モード を除いてほとんど浄化されているので、これ以上の PM 低減には soot そのものの低減が必 要である。しかし小形汎用エンジンで機械式噴射系を用いた場合、100MPa を超えるような 超高圧噴射は強度上困難である。また、コモンレールなどの高価な高圧噴射系はエンジン コスト上適用が困難であることから、EGR+燃料改質ガス+酸化触媒の全てを適用しても、 Tier4 規制を満足することは困難であることが明らかとなった。

4.2.7 平成19年度研究結果のまとめ

本年度の研究により、EGR ガスの一部改質に加え、酸化触媒を使用して PM 中の SOF 分を 削減し、PM 低減を図った結果、現状に比べ概ね PM を半減することができたが、目標値の 達成はできなかった。エンジンの排出する PM には潤滑油起源の灰分も含まれることから、 潤滑油消費率がエンジン劣化とともに増えた場合は、PM が悪化することが分かっており、 本研究で目指した DPF なしでの Tier4 対応は極めて困難であると言える。しかし、PM 排出 量が少なくなれば、DPF のサイズを小さくできるなどのメリットがあることから、DPF 小型 化によるコスト低減と改質ガス発生装置のコストを見比べながら、最適な組み合わせを検 討することにより、産業用エンジンに最適な Tier4 対応技術が確立できると考える。

参考文献

1)鈴木,自動車排気の健康影響はどのように評価するのか?,自動車技術会誌特集,58-7,
 (2004),47-51.中西;環境リスク管理と予防原則、学士会会報 No.855

2) http://www2.kankyo.metro.tokyo.jp/jidousya/diesel/regulation.htm.

3) Qiugley, M., Seguelong, T., Series Application of a Diesel Particulate Filter with a Ceria-based Fuel-Borne Catalyst : Preliminary Conclusions after One Year of Service, SAE Paper 2002-01-0436

- 4) 塩崎ら, 直噴ディーゼルエンジンの EGR が性能及び排ガスに与える影響, 自動車技術 会論文集, No. 46-906067, (1990)
- 5) Nickolas, S., Engine Tests of an Active Diesel Particulate Filter Regeneration System, SAE Paper 2006-01-1424

4.3 三菱重工業分科会

本節では三菱重工業にて実施した研究結果について説明する。本年度の研究では、Tier3 規制対応エンジンの排ガス値をベースに、インタークーラー、クールド EGR および後処理 装置として酸化触媒(DOC)およびメタル DPF を試作し、強制再生が必要なセラミック DPF 無しでどこまで PM 低減可能かを探る。

4.3.1 研究開発の実施事項

ここでは本年度研究で実施した事項について説明する。

4.3.1.1 C1および NRTC モード評価結果

Tier4 規制では、定常運転で計測する C1 モードに加えて、過渡運転による NRTC モード が導入される。そこで、本研究では C1 モードと NRTC モードの比較評価を実施した。

4.3.1.2 エンジン仕様と NOx, PM の関係把握

エンジン本体仕様として燃料噴射時期および EGR 量、後処理装置として DOC およびメタル DPF の仕様を変更した場合の Nox, PM の関係について把握した。

4.3.1.3 酸化触媒およびメタル DPF による PM 低減試験

排気後処理装置として、DOC およびメタル DPF による PM 低減に関する評価を実施した。

4.3.2 研究開発の方法

ここでは研究開発に用いた装置や試験方法、試験条件について説明する。

4.3.2.1 供試エンジン

供試エンジンは、小型建設機械用ディーゼルエンジンで、EPA Tier3 規制に対応した仕様である。主要諸元を表4.3-1に、エンジン外観を図4.3-1に示す。

F 1	p 11.	
項目	単位	仕様
気筒数		4
ボア×ストローク	mm	ϕ 94 × 120
排気量	L	3. 331
燃焼方式		直接噴射式
EGR		クールド EGR
燃料噴射ポンプ		VE 型(タイマー付き)
過給		ターボ付き
インタークーラー		有り
定格出力	kW/rpm	55/2500
対応排ガス規制		EPA Tier3

表4.3-1 供試エンジンの主要諸元

図4. 3-1 エンジン外観

4.3.2.2 供試後処理装置

本研究で用いたメタル DPF の仕様について表4.3-2に、DOC、DPF 外観を図4.3-2に示す。なお、今回供試した DOC 仕様は1種類のみである。

名称	容量	触媒担持
#1DPF	小	無し
#2DPF	小	有り
#3DPF	大	無し

表4.3-2 供試メタル DPF の仕様

図4. 3-2 供試 DOC, メタル DPF 外観

4.3.2.3 運転計測装置

本研究で用いた運転装置、計測装置の仕様について表4.3-3に、エンジン台上運転 装置外観図を図4.3-3に示す。

No.	設備名称	型式・仕様	メーカ
1	エンジン台上運転 装置 1)操作盤 2)モード運転装置	F-6245 FAMS8000	小野測器
	3)動力計	EC-80 ECDY PTW-DAD 220kW アシストモーター付き	明電舎 小野測器
2	排気ガス分析計 マイクロトンネル	排ガス分析計 MEXA-9100DEGR 分割器 GDC-703 ①THC HFID レンジ 0-10~5000ppmC ②CO NDIR レンジ 0-1000~3000ppm ③NOX H. CLD レンジ 0-10~5000ppm ④CO2 NDIR レンジ 0-8%、16% レンジ 0-0.1~1.6% ①マイクロトンネル本体 MDLT-1300T ・マイクロトンネル本体 MDLT-1300T ・マイクロトンネル本体 MDLT-1300T ・マイクロトンネル 径の35.7mm、長さL=825mm ③DLS本体 ・D. SAMPLE流量 65~130L/min ⑤PMサンプルフィルタ 径の70mm TX40H/20-WW	- 堀場製作所 堀場製作所 東京ダイレック
4	燃費計	表示部 DF2410 センサ部 FP-2140H 0.3-200L/Hr	小野測器
5	超音波式空気流量計	検出器 GFM-700 ~1340m3/h 表示部 FR3100	東京計装 小野測器
6	スモークメータ	GSM-3DS	司測研
7	ウエイングチャンバ	PWS-80NF-YS	東京ダイレック
8	PM重量測定天秤	SE2-F 最大秤量 2.1g 読み取り限度 0.1µg	ザルトリウス
9	オパシメータ	AVL 4390 G004	AVL

表4.3-3 運転計測装置の諸元

図4.3-3 エンジン台上運転装置

4.3.2.4 運転方法

本試験では、試験仕様ごとにメタル DPF を交換し PM 堆積が無い状態から試験開始している。また NRTC 運転においては NRTC モードを 3 回運転し、3 回目をデータとして採用した。

4.3.3 研究開発の結果と解析

ここでは、試験結果について説明し考察する。

4.3.3.1 C1 および NRTC モード評価結果

基準仕様に対して、燃料噴射時期を3°進角および3°遅角した場合、EGR量をゼロにした場合、後処理装置のDOCとDPFの組み合わせを変化させた場合、DOC+#3DPFの組み合わせにおいてEGR無しとした場合の合計10仕様について、C1およびNRTCモード運転を行い、 排ガスの比較を行った。試験結果を図4.3-4に示す。

図4.3-4の結果より以下のことが解る。

・後処理装置無しの場合、HC、C0は1.3~2倍 NRTC の方が高い。

・後処理装置有りの場合、HC、COの絶対値は小さいもののNRTCの方が高めである。

・NOx、PMはNRTCの方が低めである。

図4.3-4 NRTC モードおよび C1 モードの排ガス比較

4.3.3.2 エンジン仕様と NOx, PM の関係把握

次に、表4.3-4に示すようにエンジン仕様を変化させた場合の排ガス性能について 評価を行った。C1、NRTCモードでの排ガス計測結果を図4.3-5に示す。

図4.3-5の結果より以下のことが解る。

- ・H18 年度試験結果と比較して、C1、NRTCともにベース条件のNOx・PMトレードオフが改善している。これは、インタークーラーおよび外部クールド EGR 適用の効果であると考えられる。
- ・PM に着目すると、ベースに対し特に NRTC の EGR 増での PM 悪化が大きい。

そこで EGR 増大条件において、NRTC モード中のどのような運転条件で PM が増大してい るかを分析するために、排煙濃度(オパシティ)の時間履歴を図4.3-6に示す。ベー ス、EGR 増ともにスパイク状のオパシティのピークが現れているが、オパシティ最大値は ベースの 23%に対し EGR 増は 50%以上に増大していることが解る。

さらに、エンジン回転数~エンジントルク平面上およびエンジン回転数~空気過剰率 λ 平面上に時々刻々のオパシティ値をバブル状にプロットしたものを図4.3-7に示す。 これによると、EGR 増では特にエンジン回転数 1800rpm 以上の幅広いトルクでオパシティ が増大していることが解る。また、EGR 増では空気過剰率が 1.5 付近まで低下しており、 低空気過剰率領域でオパシティ値が高いことが明らかとなった。

	A 11 0 1			- 98			
No.	燃料噴射時期	、料噴射時期 EGR 量 DOC					
1	ベース	ベース	無し	無し			
2	3 ° 進角	1	↑	1			
3	3 ° 遅角	1	1	1			
4	ベース	無し	1	1			
5	1	増	1	1			
6	↑	ベース	有り	#1DPF			
7	1	1	無し	1			
8	1	1	有り	#2DPF			
9	1	1	1	#3DPF			
10	1	無し	↑	1			

表4.3-4 変化させたエンジン仕様の一覧

図4. 3-5 エンジン仕様と NOx, PM の関係

図4.3-6 NRTC モードにおけるベースおよび EGR 増でのオパシティ時間履歴

図4.3-7 エンジン回転数とトルク・空気過剰率に対するオパシティ分布

4.3.3.3 酸化触媒およびメタル DPF による PM 低減試験

最初に、図4.3-8に示すとおり各仕様での SOF 割合を評価した。EGR 増は EGR 無し に比べ、NRTC での SOF 割合が低下しており、EGR 増加による HC 排出量増大(すなわち SOF 分増大)に対して SOOT 分増大の方が大きいことを示している。また、#1DPF 適用条件にお いて DOC 有りから無しに変更することで、SOF 割合は 7%から 25%に増加する。

図4.3-9に示す NRTC モードでの排ガスの温度時間履歴を見ると、タービン出口から DOC 入口で排ガス温度が最大 50℃低下するため、DOC の活性を保つためには今後保温等の対策が必要である。

DOC およびメタル DPF による排ガス浄化率について図4.3-10に示す。このグラフ より以下のことが解る。

- ・DOC+#3DPFの場合、EGR 無しでは NRTC モードの PM 浄化率 68%であり、想定された PM 浄 化率(50%程度)を上回る結果を得た。このときのオパシティ分布を図4.3-11およ び図4.3-12に示すが、運転領域全域に渡ってオパシティが低減している。
- ・一方、C1 モードの PM 浄化率は 51%である。これは NRTC に比べて排気温度が高く排気中の NO2 濃度が低くなるため、PM の燃焼が抑制されたことが一因と考えられる。
- ・#1DPFと#2DPF(触媒担持)のPM浄化率はC1、NRTCとも同等であり、メタルDPFに触媒を担持するメリットは無い。

さらに C1 と NRTC の排ガス浄化性能を比較するために、DOC 入口ガス温度の頻度分布お よび累積頻度分布を図4. 3-13に示す。この結果、NRTC は C1 に比べて排気温度が低 温側に集中しているものの、225℃以上の累積頻度はほぼ同じ(70%)であり、DOC による HC および SOF 浄化性能はほぼ同じであると考えられる。

図4. 3-8 各仕様での PM 中の SOF 割合

図4.3-9 排ガス温度の時間履歴 (DOC+#1DPF の場合)

図4. 3-10 DOC+メタル DPF による排ガス浄化率

図4. 3-11 DOC+#3DPF(EGR 無し)でのオパシティ時間履歴

図4. 3-12 DOC+#3DPF (EGR 無し) でのオパシティ分布

図4.3-13 DOC入口温度の頻度分布および累積頻度分布 (DOC+#3DPF(EGR 無し)の場合)

4.3.4 まとめ

今年度の研究成果と今後の進め方についてまとめる。

4.3.4.1 平成19年度の研究成果

Tier3規制対応エンジンの排ガス値をベースに、インタークーラー、クールド EGR および後処理装置として DOC およびメタル DPF を試作し、セラミック DPF 無しでどこまで PM 低減可能かを探った結果、以下の成果が得られた。

- (1) ベースエンジンにインタークーラー、クールド EGR を適用することで、H18 年度に 対してエンジンアウト排ガスを低減した。
- (2)酸化触媒(DOC)およびメタル DPF(#3DPF)を採用することで、EGR 無し NRTC モードにおいて PM 浄化率 68%を得た。

4.3.4.2 今後の課題

55 k Wクラスの Tier4 規制に対応するためには PM を 1/10 程度にする必要があるが、特に C1 モードにおいて更なる PM 低減を図る必要がある。

本研究においてメタル DPF 適用により NRTC モードでは 68%の PM 浄化率を得られたが、 さらなる容量増大による PM 浄化率を明確にする必要がある。また、PM 低減策の選択肢と して、PM 浄化率の高いセラミック DPF を採用する可能性があり、機械式噴射ポンプでの強 制再生手法の確立と PM 浄化性能の把握が必要である。

4.3.4.3 来年度の重点実施事項

今年度は Tier3 規制対応エンジンに対し、インタークーラー、外部 EGR を適用し、DOC およびメタル DPF による PM 限界を把握した。

来年度はベースエンジンに対し、小容量ターボの採用とノズル仕様、燃料噴射タイミン グ、EGR 量の適正化によりエンジンアウトの PM 低減を図る。

一方、後処理装置としては更なる大容量メタル DPF を試作し PM 浄化率を明確にするとと もに、これと同容量のセラミック DPF を試作し、PM 浄化率の比較を実施する。さらに、セ ラミック DPF は強制再生が必要であり、強制再生可能なエンジン制御装置を導入し、特定 の定常状態での再生を実施する。

以上の結果を元に、小型エンジンに求められるコストミニマムな PM 低減方法を明らかに する予定である。

- 4. 4 IHI シバウラ分科会
- 4.4.1 平成 19 年度の研究目的

平成 18 年度の研究に引き続き、米国 EPA の汎用ディーゼルエンジン 37kW 以上 56kW 未満において、2013 年から導入が予定されている Tier4 規制への特に PM 適合可能性を 検討する。平成 18 年度の研究では大きく以下三点の事が分かり、平成 19 年度の研究では、 主に平成 18 年度の研究を行なった結果から生じた新たな課題への確認を主に行なった。

平成 18 年度研究結果概要

- (1) 試験した DPF は PM の捕集率は約 90%で予想通りの結果であり、PM は Tier4 規 制値を達成するレベルであった。
- (2) DPF に堆積したすすを燃やし、DPF を再生させるには高い排気温度が必要であり かつスモーク濃度も低いことも必要である。
- (3) DPFの再生温度を下げるべく DPFの素材、触媒担持仕様、温度分布の改良が必要である。

エンジンの使用用途によりエンジン回転速度、負荷の中で連続的に再生の成立しない領 域を持ちそのような負荷で使われた場合には別途強制的な再生をさせる必要がある。

以上より平成19年度の試験は下記2点についての研究を行なった。

- (1) 新型 DPF による再生性能の把握
- (2) 排気管への軽油噴射による DPF 強制再生性能の把握

4.4.2 試験エンジン諸元と概要

平成 18 年度で使用したエンジンで EPA Tier2 対応量産エンジン (IHI シバウラ製 N844L型) をベースに、噴射ポンプの仕様変更により Tier3 排ガス対策レベルの仕様であ る。表4.4-1にエンジン諸元、図4.4-1にエンジン外観写真を示す。

表4.4-1	エンシン緒元
気筒数	4
ボア×ストローク	8 4 × 1 0 0
(mm)	84 ~ 100
排気量	2216
(сс)	2210
燃焼方式	渦流室式
給気方式	自然吸気

図4.4-1 エンジン外観

N844L エンジンは定格出力の回転速度は用途により 1500rpm から 3000rpm までの設 定があるが、今回の試験ではペアレントエンジンになると予想される一般産業用向けであ る 2800rpm 仕様を選択した。表4.4-2に定格点と最大トルク点の値を示す。

表4.4-2

エンジン名称	: N 8 4 4 L
定格出力	: 37. 3kW∕2800min ⁻¹
最大トルク	: 1 4 3 Nm $/$ 1 8 0 0m i n ⁻¹

4.4.3 試験期間

平成 19 年 12 月 2 日~12 月 26 日

4.4.4 新型 DPF 試験

(1) 新型 DPF の仕様

試作した DPF は 5 種類で DPF はウォールフロータイプで、DPF 上流にはフロースル ータイプの DOC (酸化触媒) を配置させた。触媒による PM の酸化力アップを狙い DPF 側にも触媒を担持した。DPF、DOC サイズは共に直径が約 ϕ 140 全長は 150mm である。 表4.4-3に5種の仕様を示す。仕様1は平成18年度で試験を行なった仕様であり、 それに対して仕様2と仕様3は DOC への自金担持量を増やした。仕様4は DPF の担体材 料が仕様1のコーディライト製に対してSiC製(炭化ケイ素)である。仕様5は DPF に 担持した触媒仕様が非白金系である。いずれも連続再生の範囲を広げることを狙った。

	C					
仕様	DC	DC	DPF			
	担体材料	担持触媒	担体材料	担持触媒		
1	コーディライト	白金2g/L	コーディライト	白金2g/L		
2	コーディライト	白金3g/L	コーディライト	白金2g/L		
3	コーディライト	白金5g/L	コーディライト	白金2g/L		
4	コーディライト	白金2g/L	SiC	白金2g/L		
5	コーディライト	白金2g/L	コーディライト	非白金系		

表4.4-3 試作 DOC と DPF

DPF のエンジンへの取り付けレイアウトを図4.4-2に示す。平成18年度のレイア ウトは DPF をエキゾーストマニホールドから約3mに設置したが、今回はDPF の温度を 上げるべく、搭載条件を考え、エンジンに近い位置に搭載した。キャニングについては排 出ガスの DPF への分布が均一になるよう形状を見直し、さらに排気消音機能も持たせた。

図4.4-2 DOC+DPF レイアウト

排気圧力及び温度の計測はエンジンエキゾーストマニホールド出口、DOC 前及び DPF 前後を測定し、温度についてはさらに DPF の前面より深さ 30mm の位置の DPF 内部で 水平方向に5ポイント測定した。DOC と DPF の外観を図4.4-3に示す。

図4.4-3 DOC+DPFの外観

(2) 試験方法

DPF の再生性能確認はバランスポイント試験で下記手順にて行なった。

 エンジン回転速度 1800rpm、100%負荷にて運転して DPF 差圧が約 20kPa 程度 になるまで PM を溜める。 ② バランスポイントを確認するエンジン回転速度、負荷にセットし、連続運転を行い、排気圧力を連続計測、記録をする。

③ 排気圧力の変化を観測し、再生状況が確認出来るまで運転するが最長 30 分とする。(3) 試験結果

バランスポイント試験のデータを図4.4-4、図4.4-5に示す。本データは連続 運転中の各部圧力と温度を連続記録した結果である。赤色の線がDPF入り口圧力である。 2800rpm、100%負荷時は時間経過と共に圧力が減少しており、一方2800rpm、20%負荷 では圧力が上昇していることが読み取れる。ここで今回の試験では圧力の減少した場合は PMの減少があったという推定をしている。

図4.4-4 2800rpm、100%負荷

図4.4-5 2800rpm、20%負荷

同様な手順にて 2800rpm と 1800rpm の各エンジン負荷の影響を、DPF5 種について計 82 点のバランスポイント試験結果を行なった結果を表4.4-4に示す。

記号の○は圧力が減少した場合、記号△は圧力が変化しない場合、記号×は圧力が上昇し

た18年度の試験では圧力が減少したポイントは2800rpmの100%負荷付近のみであった が今回の結果は平成18年度に比べ広い範囲にて圧力が減少する結果が得られた(〇印)。 圧力の上昇するポイントは最大トルク点である1800rpmの100%負荷と2800rpm、 1800rpmの負荷の低い域であった(×印)。5種のDPFを比較すると圧力の上昇、変化し ない及び減少する状況は5種すべて同じ結果であった。

表4.4-4 バランスポイント試験まとめ

記号と排圧の変化状況 〇:排圧が減少している ム:排圧が変化なし

×:排圧が上昇している

	2800rpm									1800rpm	l				
エンジン 負荷	DOC入り 口温度 (℃)	参考 スモー ク(%)	仕様1	仕様2	仕様3	仕様4	仕様5	エンジン 負荷	DOC入り 口温度 (°C)	参考 スモー ク(%)	仕様1	仕様2	仕様3	仕様4	仕様5
100%	660	7	0	0	0	0	0	100%	630	10	×	×	×	×	×
90%	570	0	0	-	-	-	-	90%	525	3	0	0	0	0	0
80%	510	0	0	0	0	0	0	80%	450	1	0	0	0	0	0
70%	450	0	0	I	I	I	-	70%		0	-	I	I	I	I
60%	415	0	0	0	0	0	0	60%	350	0	0	0	0	0	0
50%	370	0	0	-	-	-	-	50%		0	-	-	-	-	-
40%	315	0	0	0	0	0	0	40%	265	0	Δ	Δ	Δ	Δ	Δ
30%	290	0	Δ	Δ	Δ	Δ	Δ	30%	230	0	×	×	×	×	×
20%	245	0	×	×	×	×	×	20%	190	0	×	×	×	×	×
10%	230	0	×	×	×	×	×	10%	-	0	_	-	-	-	-

注)DOC入り口温度は仕様1試験時の数値である

今回の試験結果から圧力の減少する範囲、変化しない範囲及び上昇する範囲をエンジン 回転と負荷でどのようになるかを推定した図を図4.4-6に示す。

図4.4-6 排圧変化推定

(4) 考察

平成 18 年度の結果に比べエンジン回転と負荷に対して圧力の減少範囲が広くなった理 由としては DPF の設置位置をエンジンに近づけた事と DPF 上流のキャニングの改良によ る効果が上げられる。DPF の再生性能を向上させる為には DPF の設置位置は排気温度の 高いエンジンに近い位置にすることが重要項目の一つと考える。DPF の仕様 2 と仕様 3 は触媒による酸化能力アップを期待して白金の量を増加して再生性能向上を狙ったが、今 回の結果からは差が見られず、白金担持量は仕様 1 の 2g/L が適当と思われ、さらに減ら すことが出来る可能性もある。仕様 4 は DPF 材料をコーディライト製に比べ熱伝導性の 良い SiC 製にて再生能力の向上を期待したが今回の結果からは差が見られなかった。仕様 5 は DPF に非白金系の触媒を担持したもので、白金並みの結果が得られており今後白金系 以外での触媒採用の期待が持てる。

4.4.5 軽油噴射強制再生試験

(1) 軽油噴射装置仕様

軽油噴射装置の外観を図4.4-7に示す。噴射ノズルの排気管への取り付け状況を図 4.4-8に示す。噴射ノズルから噴射される噴霧は噴射ノズルの前にて軽油と空気が混 合されて約 100kPa にて行なわれる。1ストローク当たりの噴射量は一定でマニュアルコ ントローラーにより時間当たりの噴射回数を調整して噴射量の増減が出来、噴射量は最大 では約 15g/min である。噴射ノズルの噴孔位置はエキゾーストマニホールドフランジから 約 60mm 下流の位置とした。軽油噴射方向は排気ガス流に対して対向する方向に噴射した。

図4.4-7 軽油噴射装置外観

図4.4-8 ノズル取り付け状況

(2) 試験方法

軽油噴射による DPF 強制再生試験は次の手順にて行なった。

- DPFをエンジンに取り付け、エンジン2800rpm、100%負荷運転を一定時間行い、
 DPFを再生させ初期化を行なう。
- ② DPF を取り外し、恒温槽にて 200℃にて一定時間乾燥をさせて重量を測定する。
 (重量 A) DPF の水分を蒸発させて水分の影響を排除する。
- ③ DPF をエンジンに取り付け、すすの捕集条件(1800rpm、100%負荷)にて DPF
 差圧が約 20kPa になるまで運転する。
- ④ DPF を取り外し、恒温槽にて 200℃にて一定時間乾燥をさせて重量を測定する。
 (重量 B)
- ⑤ DPF をエンジンに取り付け、軽油噴射による再生試験を行う。
- ⑥ DPF を取り外し、恒温槽にて 200℃にて一定時間乾燥をさせて重量を測定する。
 (重量 C)
 - ・重量 B-重量 A=再生試験前に DPF に堆積した PM 重量
 - ・重量 B-重量 C=再生試験により DPF から除去された PM 重量

DPF を恒温槽で乾燥させている状況と **DPF** の重量を計測している状況を図4.4-9 と図4.4-10に示す。

図4.4-9 恒温槽

図4.4-10 重量計測

強制再生試験で試験する DPF は担体材料の比較が出来る、コーディライト製の仕様 1 と SiC 製の仕様 4 の両方にて行なった。

(3) 試験結果

今回行なった試験結果のまとめを表4.4-5に示す。DPF 二つの仕様でエンジン回転 負荷の違いで計8回の試験を行った。表中は排気管へ噴射した量とそれによる PM の堆積 量の変化及び再生率を示す。

DDE什样1	(7- 7 , / 7 /)
	(

	エンジン回転	自荷	軽油噴射量(30分間)	試験前PM 堆積量	試験後PM 堆積量	PM除去重量	再生率	
試験 No.	rpm		g/min	g	g	g	%	
1	1800	40%	14.8	11.8	11.7	0.1	0.8	
2	1800	60%	14.8	12.7	6.4	6.3	49.6	
3	1800	80%	14.8	14.0	1.8	12.2	87.1	
4	1800	60%	11.6	13.7	10.8	2.9	21.2	
DPF仕様4(SiC)								
5	1800	40%	14.8	10.3	7.6	2.7	26.2	
6	1800	60%	14.8	16.8	8.3	8.5	50.6	
7	1800	80%	14.8	13.9	0.4	13.5	97.1	
8	2800	40%	13.5	8.6	10.3	-1.7	-19.8	

試験№2の DPF 仕様 1 で実施した時の各部温度及び圧力の記録チャートを図4.4-11 に示す。エンジンを 1800rpm、60%負荷にて運転し、排気軽油噴射を 14.8g/min の量を 30分間実施した結果である。DPF 内部(前面から 30mm で DPF 中央部)の排気温度が 約 350℃であったところへ軽油噴射を行なうことにより温度が上昇して約 590℃でサチレ ートしている。DPF 前圧力は軽油噴射後若干上昇してその後減少した。30分間の噴射を 行い噴射を停止すると DPF 内部温度は噴射前の温度に戻り、DPF 前圧力は噴射前に比べ 約半分の値となった。

本試験では DPF に堆積した PM 量は試験前 12.7g で、試験後は 6.4g となり DPF 再生率 は 49.6%であった。排気に噴射した軽油の 14.8g/min は本エンジンの定格点エンジン筒内 噴射量の約 9%に相当する。

図4.4-11 再生試験チャート

DPF 仕様1にて行なった再生試験でエンジン負荷40%、60%、80%で排気噴射前後の PM 堆積量の比較を行なった結果を図4.4-12に示す。負荷の違いにおいても同一軽 油噴射量では温度上昇幅は同等であるが、ベース排気温度が高い高負荷の方がDPF内部 温度は高く、PMの除去量は多い。

図4.4-13は DPF 材料が仕様1のコーディライト製に対して仕様4の SiC 製とで 再生性能の比較をした結果を示す。SiC 製はコーディライト製に比べ再生率が高い傾向に あり特に負荷の低い40%負荷で差が大きかった。

図4.4-13 コーディライトとSiCの比較

図4.4-14に DPF 内部の温度をコーディライトと SiC とで比較した結果を示す。 1800rpm の40%負荷にて軽油噴射 30分後における中央部に対する DPF の外周方向への 温度差比較で、SiC の方がコーディライトに比べ外周分の温度低下が少ない。

図4.4-14 DPF 内部温度差

図4.4-15は再生率が-19.8%の結果であった試験№8の再生試験チャートである。 本試験はエンジン回転2800rpm、40%負荷で軽油噴射を行なった結果である。軽油噴射に より DPF 内部温度は約300℃から約470℃まで上昇しており DPF 前圧は噴射開始時の上 昇がありその後はほぼ変化なしで推移している。試験後における PM の重量変化について は PM を溜め込んだ試験前に比べ増加する結果であった。図4.4-16は同時に計測し た DPF 後の HC と CO 濃度の結果で、軽油噴射中も非常に低いレベルで推移している。 尚、本再生試験は今回の軽油噴射試験の最初に行った条件で、本条件において PM の減少 が得られなく、2800rpm に対しては本装置では軽油噴射量が不足となってしまった為、こ の後は排ガスボリュームが低く、排ガス温度の上昇が大きく再生が期待できるエンジン回 転速度の低い 1800rpm に試験条件を変更した。

図4.4-15 2800rpm、40%負荷

図4.4-16 HC, COの計測

試験No.4 は試験No.2 に対して同一エンジン回転、負荷条件にて軽油噴射量を 14.8g/min から 11.6g/min と約 20%減らした影響を見た試験であり、噴射量減により DPF 内部温度 は減少して DPF 再生率も半分に減少した結果であった。

 図4.4-17に再生試験後の DPF の状況を示す。再生率に対するすすの堆積状況が 分かる。

図4.4-17 再生試験後 DPF 状況

(4) 試験考察

本研究の目的の一つとして軽油を排気管に噴射をすることにより、DPF に堆積したすす を燃焼させ DPF の強制再生性能の把握を目的とした研究を行なった。軽油噴射により排 気温度の上昇が得られ、DPFの再生率がほぼ 100%となる結果も得られた。但し再生率 100%を行うにはエンジン回転、負荷の条件が限定され、排気管への軽油の噴射量も多く を必要とされる。今回試験に用いた軽油噴射装置の最大可能噴射量 14.8g/min においてエ ンジン回転速度 1800rpm の条件で得られた温度上昇は約 240℃という結果であった。こ の温度は噴射した軽油が温度に変わった場合の推定値に対して約 60%の上昇分であり期 待値に対してはかなり低い結果であった。期待値に対して低かった原因推定としては噴射 した軽油のガス化が不十分で軽油が排気管等への付着で燃焼されなかった事が考えられる。 試験Na.8において再生率がマイナスになった結果でも軽油のガス化不十分で生の軽油がす すや DPF に直接付着してそのまま存在していたことが考えられる。DPF 後の排ガス測定 はHC濃度がわずか数ppmであることからも軽油がDPF内に留まっている可能性がある。 再生率を高める因子の一つとして高排気温度は重要であり、軽油噴射により高い排気温度 を得る為にはより効率の良い性能が得られる軽油噴射及びガスとの混合が必要と考える。 さらに温度を上昇させる為には吸気、排気絞り及び EGR 等による補助装置による組み合 わせが考えられる。DPF 材料の SiC 製は強制再生においてコーディライト製に比べ再生率

が良かった結果はここに来て SiC の熱伝導性の良さが現れたと思われる。

4.4.6 データの分析と課題

今回の研究では DPF の再生性能の把握ということで触媒による再生及び強制的な再生 試験を実施し、有益なデータの測定が得られたと考える。DPF のレイアウトをエンジンに 近い位置に設置したことにより連続的に再生される範囲が広がった。しかし汎用ディーゼ ルエンジンが搭載される機械、車両構造は公道走行車両に比べ、作業性等でエンジンや吸 排気系の搭載位置やスペースの制約があり DPF の搭載位置については機械、車両部門、 メーカーとの協議が必要である。排気管への軽油噴射により強制再生の可能性を確認出来 たが、燃費の悪化を少なくする構造、システムの検討が課題である。

尚、DPF に堆積した PM を把握するのには DPF 前後の差圧は一つの判断として使えるが、重量を実測する方法が不可欠であると考える。

4.4.7 課題への対応

(1) 強制再生装置の検討

新型 DPF 及び軽油噴射により平成 18 年度に比べ DPF の再生範囲が広がったが、エン ジン低排気温度領域等の課題が山積している。その改善のために DPF のレイアウトに制 約が少なく、排気温度の低い使用域にて排気温度を上昇させる能力が期待出来る新型バー ナーシステムを検討する。

4.4.8 今後の予定(次年度の予定)

- (1) DPF 強制再生技術の検討
- (2) 新型 DPF 強制再生装置の設計
- (3) 新型 PDF 強制再生装置の試作
- (4) 新型 DPF 強制再生装置の試験(平成 20 年 9 月頃を予定)

5. まとめと今後の課題

5.1 まとめ

小型汎用ディーゼルエンジンでは、その排ガス浄化に対する社会要求や規制が国内外で ー層厳しくなりつつある。規制対象ガスの中でも特に PM は、その規制値が極めて厳しく なる状況であって、例えば 56kW 未満のディーゼルエンジンの場合その PM 規制値が、米 国では 2012 年から EPA Tier4 の適用によって 2008 年規制値の 1/10、つまり 0.03g/kWh と低くなり、また日本国内でも 2013 年から米国と同様に厳しくなる可能性が高い。

本事業は、Tier4への適合を睨んで、我国の小型汎用ディーゼルエンジンにおける各モードでの排気レベルの現状を把握した上で、各種の排ガス低減技術の開発と集積適用を進めながら、Tier4適合化への可能性を見極めることを主たる目的としている。

昨平成 18 年度は、我国で生産されている小型汎用ディーゼルエンジンの幾つかを対象 に、各モードにおける排ガス特性の現状レベル等を調査・把握した。

その結果、Tier4 適合のためには殆どのエンジンにおいて大幅な PM 低減が重要課題であることが改めて確認されると同時、その対応として燃焼改善等のエンジンアウトの排ガス低減技術に加えて、後処理技術の開発が必要であることが示唆された。

本平成 19 年度では、昨年度に引き続き、エンジンアウトの排ガス低減技術の開発を進 めると同時に、PM 低減のための後処理技術を主軸にした開発を系統的に行うことによって、 Tier4 適合化に対する可能性の見極めを推し進めた。

その結果、ディーゼルエンジンにおいて燃焼系等での排ガス低減技術に加え、後処理技術を開発・適用することによって、Tier4 に対する PM 適合化の可能性がかなり鮮明になってきた。検討に供された DOC、DOC+メタル DPF、前段 DOC+DPF、前段 DOC+DPF+後段 DOC の4種の後処理法の中で、DOC 単独での手法は簡易で価格や容量等の面で最も望ましいが、PMの SOF 分が低いことからも、現状でその PM 低減効果は大きくない。Tier4 適合に向けて、やはり DOC と DPF を適宜組み合わせた後処理技術の構築が必須と思われ、まずは後処理装置の再生、信頼耐久性等の基本機能向上のための技術開発推進が自明の理である。

一方、燃焼系等でのエンジンアウトの排ガスに対する各種低減技術は、他の技術とも相 まって年ごとに進化しており、その開発・併用による PM 低減は程度に差こそあれ後処理手 法に対しても相当の好影響を与えるポテンシャルを有しているため、今後も引き続き、後 処理技術と平行して開発・適用を進めて行くことが重要である。 小型汎用ディーゼルエンジン 4 機種における、本平成 19 年度での研究開発の具体的な 成果あるいは結果は概ね以下の通りである。

- (1) 副室式エンジン(その1)において、前後段 DOC 付 DPF(触媒なし)による後処理 装置、ならびに燃料改質ガスによる DPF 強制再生装置を試作開発し、その研究・評 価から以下の知見等を得ている。
- ①燃料噴射時期の調整と DPF の装着を行なうことにより、エンジン排ガスが Tier4 規 制値に適合し得ることを確認した。
- ②前後段 DOC 付 DPF(触媒なし)、燃料改質器、燃料ポンプ、空気ブロワーの4 要素から構成された DPF 強制再生システムを試作開発した。
- ③燃料改質ガス投入時に DPF から CO と HC が多量に排出される場合があるが、後段 DOC の装着によって低減できた。なお、前段 DOC は低温酸化性を、後段 DOC は高 温耐久性を重視する必要がある。
- ④スート捕集量約 10g/L、DPF 入り口温度 600℃、再生期間 10 分の再生条件において、
 再生率はエンジンの回転速度上昇により向上の傾向を示し今回の実験では 65%~99%
 の範囲で変化した。今年度の目標再生率 70%をほぼ達成した。
- ⑤燃料改質ガス投入時に、エンジン上での前段 DOC の反応開始温度は 230℃であって、 当初の単体試験による期待温度に比べて高かった。その原因の一つは、改質温度が高 かったことによる H₂ と CO の生成量不足と思われ、改質器本体の冷却などの対策が 必要である。
- ⑥排気低温時のエンジンにおいてグロー周辺温度が 280℃以下であれば改質ガスのグロ ー着火が確保できない場合があり、着火源の強化や保炎機構の改善が必要である。
- (2) 副室式エンジン(その2)において、前段 DOC 付 DPF(触媒あり)による後処理装置、ならびに排気管内での軽油燃焼による DPF 強制再生装置を試作開発し、その研究・評価から以下の知見等を得ている。
- ①前段 DOC 付 DPF(触媒あり)をエンジンに近づけて配置し、また排ガスが DPF へ均一に流入するよう配慮することによって、DPF の連続再生運転範囲を拡大することが出来た。なお、DPF の PM 捕集率は約 90%であって、昨年度において PM の Tier4 規制値達成を確認している。

- ②DPFのPM酸化能力は、実験の範囲内ではDOCの触媒担持量とDPF材料の影響を 殆ど受けず、またDPFのPt触媒と非Pt系触媒との差も認められなかった。DOCの Pt担持量は2g/Lが適当であり、一方DPFの触媒にはPt系以外の触媒もあり得ると 思われる。
- ③排気管内軽油噴射による排気温度上昇によって、ほぼ 100%に近い DPF 再生率の達成 を確認した。この場合、エンジン回転や負荷も限定され、排気管内の軽油噴射量は 14.8g/min の 30 分間連続噴射と多く、それによる排気温度上昇分は約 240℃であって DPF 入り口温度は 680℃にも達した。管内における噴射燃料の燃焼特性が必ずしも良 いとは思われないため、未燃分低減も含めて今後の検討課題である。
- ④③の結果から、燃費の悪化が懸念されるため、それを抑制するための後処理装置の構造やシステムの開発と併せて、PM 堆積量の把握手法の開発も課題である。
- ⑤DPFの再生率は、コーディライトに比べて SiC の方が高くなる傾向が見られ、その程度はエンジン負荷が比較的低い場合に顕著である。
- (3) 直噴エンジン(無過給)において、燃料改質ガス混合 EGR、ならびに酸化触媒 DOC の適用による NOx と PM の同時低減効果を究明・検討し、Tier4規制適合への可能 性に関して以下の知見等を得ている。
- ①燃料改質を模擬した H₂・CO 混合ガスを EGR ガスに添加混合することによって、 PM-NOx のトレードオフ関係を改善することが可能である。しかし、その改善程度は 必ずしも十分ではなく、燃料噴射時期によって NOx+THC 値を Tier4規制値に適合 させた場合の PM 値は、排気系に酸化触媒を設置しても約 0.1g/kWh であって、規制 値の 3 倍程度高い値となった。
- ②したがって、EGR+EGR ガスへの燃料改質ガス添加+酸化触媒 DOC の3つの対応を 同時適用したとしても Tier4 規制値への排ガス適合化は難しい。PM 適合化への対応 として DPF 装着の必須性が示唆される。
- ③特に高負荷モードにおける燃料改質ガス混合 EGR の適用時には、PM 悪化による EGR 増加への制約とそれに伴う NOx 低減効果の縮小とが顕著になる傾向があって、これ がモードでの排ガス改善に対する障害の一つになる。
- ④酸化触媒 COD のライトオフ温度は CO よりも THC において高くなることから、DOC での SOF 低減は CO 低減よりも難しいと推察される。ライトオフ温度は Pt 触媒量の

増加で低下し、本実験での触媒量範囲では THC が 260℃から 205℃へ、また CO は 220℃から 160℃へそれぞれ低下した。

- (4) 直噴エンジン(ターボ過給)において、酸化触媒 DOC と強制再生を要しないメタル DPF とで構成される後処理装置、ならびに幾つかの燃焼系排ガス改善技術を適用することによる NOx と PM の同時低減効果を究明・検討し、Tier4規制適合への可能性に関して以下の知見等を得ている。
- ①ベースエンジンにインタークーラー、クールド EGR を適用することによって、C1 と NRTC モード共に NOx-PM トレードオフ関係が改善され、昨年度結果に対してエン ジンアウトの排ガスエミッションを低減し得た。
- ②前段 DOC とメタル DPF を排気系に採用することによって、EGR なし NRTC モード で PM 浄化率 68%を、またC1モードでは 51%をそれぞれ得た。Tier4の規制値をク リアするには、PM を 1/10 程度に低減する必要があり、PM 値を更に低減しなければ ならない。
- ③後処理装置の有無などのエンジン条件に殆ど関わらず、C1 モードに比較して NRTC モードでは、全般的に CO と HC の排出濃度が高めで、NOx と PM は低めに出る場合 が多い。
- ④前段 DOC+メタル DPFの浄化率は、DOC が無ければ低下するが、メタル DPF での 触媒の有無によって C1・NRTC モード値の何れもが殆ど変わらず、メタル DPF への 触媒担持のメリットは認められない。触媒担持がなくとも DPF 容量の増加によって 浄化率は向上する。
- ⑤C1 に比べて NRTC モードでは排気温度が低温側に集中しているものの、225℃以上の累積頻度は両モード共に同じ 70%位であるため、DOC による HC や SOF の浄化性能はほぼ同一と思われる。
- 5.2 今後の課題

小型汎用ディーゼルエンジンにおける Tier4 規制値への排ガス適合化に向けて、現状で は PM と NOx+HC の低減技術、特に PM 低減技術の確立が重要であって、燃焼系等での 排ガス低減対応と併せて、排ガス後処理に関わる技術開発が急務である。

代表的な PM 低減技術として燃焼系では各種の燃料噴射技術が、また後処理技術では

DOC や DPF などの技術があるが、小型汎用ディーゼルエンジンでは自動車用エンジン等 に比べて低コスト、高耐久信頼性、コンパクト化などの要件が特段に高いことを考慮すれ ば、現用のエンジンに対してミニマムな改修または技術開発が基本であって、後処理が必 要な場合でも出来るだけ簡素にして高性能な後処理システムの技術開発が指向されよう。

Tier4 適合のために開発された技術あるいは機器、特に後処理システムでは、エンジン 装着状態での機能性や制御性そして上述のような要件の確保に加えて、それによる燃費率 悪化を最小限に留めることも併せて今後の課題である。

更に、汎用ディーゼルエンジンは、自動車用エンジンの様にほぼ同一性状の燃料だけを 利用する訳ではない。国内外において性状が大幅に異なる燃料を使用する可能性が極めて 高いことを思うと、PM・NOx等の排ガス対応や燃費対応で開発した技術または機器の機 能、耐久信頼性、安全性等に対する燃料性状サイドからの検討と対応も決して欠くことの 出来ない項目である。

本事業における次年度に向けての課題はいずれも、Tier4 規制適合を最終目途として、 小型汎用ディーゼルエンジンにおける排ガス後処理、特に DOC や DPF による PM 後処理 と、燃焼系等での排ガス低減対応の技術開発を鋭意推し進めることにより、それらの技術 構築と規制値適合への見極めに資するものである。

各ディーゼルエンジンにおける次年度の研究開発に関わる具体的な課題またはその内 容は概ね以下の通りである。

(1) 副室式エンジン(その1)

①本平成 19 年度の研究から得られた下記の(a)~(c)の問題点を改良すると共に、強制再 生システムを実装したプロトエンジンを試作する。

(a)空気ブロワーとモーターのマッチング、性能向上による暖機時間短縮と燃費改善。

(b)改質触媒層の断熱と冷却による H₂ と CO の収率向上、DOC 有効温度の低温化。

(c)排気低温時での改質ガス着火運転のための点火源強化、保炎構造の改良。

②強制再生システムの制御ロジック、制御回路の試作と評価を行う。

本年度は手動で再生補助装置を操作して試験を遂行したが、明平成 20 年度では自動 化装置と制御ロジックを付加、DPF 再生性能・動作性能・実機搭載性を評価する。 (a)予備データ取得 排気温度計の応答性、エンジンの回転速度・負荷に対する DPF の再生可能限界の

確認→高負荷運転時の酸素濃度が低い条件下で煤が燃焼可能な限界を確認する。

- (b)本年度の試験結果と上記(a)の結果を基にして制御ロジックの構築と制御回路を試 作する。
- (c)制御装置を組み込んだ強制再生システムの、エンジン実機運転での動作・性能評価。 ③本研究は DPF 再生に対する燃料改質器の適用可否を判断する段階でありコスト的、
- スペース的に現実的な再生補助装置の実装(実用化)は、今後の大きな課題である。更 に、燃料消費量低減、信頼性、耐久性確保もこれからの検証と解決すべき課題である。
- (2) 副室式エンジン(その2)

本平成 19 年度では新型 DPF および軽油噴射により前年度に比べて DPF の再生範囲 が広がったが、エンジン低排気温度領域等の課題が山積している。その改善のために DPF のレイアウトに制約が少なく、しかも低排気温度領域にて排気温度を上昇させる能 力が期待できるような新型バーナーシステムを検討する。

- ①DPF 強制再生技術の検討。
- ②新型 DPF 強制再生装置の設計。
- ③新型 DPF 強制再生装置の試作。
- ④新型 DPF 強制再生装置の試験。(平成 20 年 9 月頃を予定)
- (3) 直噴エンジン (ターボ過給)
- ①次年度はベースエンジンに対し、小容量ターボの採用とノズル仕様、燃料噴射タイミング、EGR 量の適正化を行ってエンジンアウトの PM 低減を図る。
- ②後処理装置として更なる大容量メタル DPM を試作し PM 浄化率を明確にすると共に、
- これと同容量のセラミック DPM を試作し、PM 浄化率の比較を実施する。
- ③セラミック DPM は強制再生が必要であるため、強制再生可能なエンジン制御装置を
 - 導入し、特定の定常状態でその再生試験を実施する。
- 以上の結果を基に、小型エンジンに求められるコストミニマムな PM 低減方法を明ら かにする予定である。

H19年度環境対応型ディーゼルエンジンの

基盤技術開発補助事業報告書

発 行 所

社団法人 日本陸用内燃機関協会

〒162-0842 東京都新宿区市谷砂土原町1-2-31
 電話 (03) 3260-9101~9102
 FAX (03) 3260-7965

無断で複写することを禁ずる